3 พ.ค. เวลา 07:30 • วิทยาศาสตร์ & เทคโนโลยี
แม่นยำ ฉับไว เอไอรายงาน สถานการณ์น้ำท่วม
จากการเกิดน้ำท่วมครั้งใหญ่ในปี 2018 ทีมนักวิจัยจากมหาวิทยาลัยโทโฮคุ ประเทศญี่ปุ่น ได้ใช้ข้อมูลภาพข่าวเหล่านั้นคิดค้นแนวทางการรับมือน้ำท่วมครั้งต่อไปที่ดีและไวกว่าเดิม ด้วยการคิดค้นโมเดลแมชชีนเลิร์นนิงที่สามารถตรวจจับและระบุภาพตึกที่ถูกน้ำท่วมได้ทันทีจากการดูภาพข่าว แม้ตึกนั้นจะอยู่ไกลและเล็กมากในภาพก็ตาม ซึ่งจะช่วยให้กระบวนการช่วยเหลือทำได้รวดเร็วขึ้นมาก
ปกติแล้วเวลาเกิดภัยพิบัติ สำนักข่าวจะเป็นทีมแรก ๆ ที่เข้าไปถึง และมีภาพมุมสูงและมุมกว้างมารายงาน ดังนั้น โมเดลจะใช้ภาพเหล่านั้นมาระบุพื้นที่ที่เกิดความเสียหายจากภัยพิบัติ โดยใช้ภาพข่าวนั้น ๆ เป็นข้อมูลในการเทรนโมเดล
เมื่อเห็นภาพข่าว เอไอจะระบุตำแหน่งของพื้นที่จากการสังเกตแลนมาร์ค จากนั้นใช้ภาพที่สร้างจากเรดาร์ SAR (Synthetic Aperture Radar) ความละเอียดสูงที่ได้จากองค์การวิจัยและพัฒนาการสำรวจอวกาศ (JAXA) มาวิเคราะห์เปรียบเทียบกับภาพข่าวเพื่อหาพื้นที่ที่มีน้ำท่วมเพิ่มเติมที่ยังระบุไม่ได้ โดยสังเกตจากคลื่นความร้อนในภาพที่สะท้อนบนพื้นที่น้ำกับพื้นที่บกอย่างแตกต่างกัน จากนั้นใช้เทคนิคแมชชีนเลิร์นนิง Support Vector Machine (SVM) เพื่อแยกตึกที่โดนน้ำท่วมและไม่โดนน้ำท่วม
โมเดลนี้มีความแม่นยำถึงกว่า 80 เปอร์เซ็นต์ ซึ่งทีมวิจัยมีแผนที่จะใช้ฐานข้อมูลภาพข่าวเก่า ๆ มาร่วมด้วยเพื่อพัฒนาโมเดลให้มีประสิทธิภาพมากขึ้นต่อไปในอนาคต เพื่อเตรียมรับมือกับภัยพิบัติที่อาจเกิดขึ้น และลดความเสียหายให้ได้มากที่สุด
After a large-scale flood in 2018, AI has sped up the process of detecting flooded buildings, allowing emergency personnel to direct their efforts efficiently. A research group from Tohoku University has created a machine learning model that uses news media photos to identify flooded buildings accurately within 24 hours of the disaster.
Normally, the media teams who are often the first on the scene of a disaster to broadcast images to viewers at home, and the research team recognized that this information could be used in AI algorithms. ML and deep learning algorithms are tailored to classify objects through image analysis. For AI and ML to be effective, data is needed to train the model.
From the news broadcast images, AI will specify the areas from the landmark, then SAR (Synthetic Aperture Radar) images can be employed to classify water bodies since microwaves irradiate differently on wet and dry surfaces. A support vector machine (SVM), one of the machine learning techniques, was used to classify buildings surrounded by floodwaters or within non-flooded areas.
The performance of this model estimation resulted in an 80% accuracy. The research group has a plan to explore the applicability of news media databases from past events as training datasets for developing AI Models at present situations to increase the accuracy and speed of classification.
บทความโดย: ทีม Sertis