1.Classification
เป็นการจัดกลุ่มจัดก้อนของตัวแปร ซึ่งก่อนอื่น เราต้องกำหนดชุดข้อมูลที่เป็นตัวตั้งต้น แบ่งออกเป็น 2 ประเภท คือ Input และ Target ซึ่งในกรณีของ Classification ที่เรากำลังพูดถึงนี้ ตัว Target ที่เราต้องการ ก็คือประเภทกลุ่มก้อน ที่จะเป็นชุดข้อมูลเล็กที่ไม่ต่อเนื่องกัน เช่น Yes/No, A/B/C หรือ Male/Female
ตัวอย่างของปัญหาที่เราสามารถใช้ Classification ในการแก้
- การอนุมัติเงินกู้ ซึ่งใช้ข้อมูลลูกค้าเพื่อวิเคราะห์ความเสี่ยงในการปล่อยกู้ Target คือ Loan/No Loan
- การป้องกันความเสี่ยงการโจรกรรมต่างๆ
- Target คือ เสี่ยงมาก/เสี่ยงน้อย/ไม่เสี่ยง
- การแบ่งประเภทของอสังหาริมทรัพย์ โดยอาจใช้ข้อมูลของโครงการ เช่น ปีที่เริ่มก่อสร้าง ขนาดของที่ดิน ขนาดพื้นที่ใช้สอยในอาคาร จำนวนห้อง หรือ จำนวนที่จอดรถ มาเป็น Input เพื่อหาTarget เป็นกรุ๊ป เช่น A/B/C
การแก้ปัญหาประเภทนี้ สามารถเลือกใช้ Model ได้หลากหลาย ตั้งแต่ Decision Tree, Random Forest หรือ Bayesian classification ขึ้นอยู่กับความเหมาะสมของงาน