Data หัวใจของ AI แนะ 4 ทริคจัดการข้อมูล สร้าง AI อัจฉริยะ
เทคโนโลยีปัญญาประดิษฐ์ หรือ AI (Artificial intelligence) คือหนึ่งในเทคโนโลยีที่ถูกให้ความสำคัญเป็นอย่างมาก โดยถูกปรับใช้ในองค์กรและธุรกิจทั่วโลก เพื่อช่วยเสริมประสิทธิภาพการทำงานทั้งในด้านธุรกิจและการปฏิบัติงาน (Operation) จากการสำรวจของ NewVantage Partners พบว่า 97.2% ขององค์กรกำลังลงทุนในด้าน AI และ Big Data แสดงให้เห็นถึงความตื่นตัวของภาคอุตสาหกรรมที่กำลังเร่งปรับใช้เทคโนโลยีเพื่อประโยชน์ทางธุรกิจและรับมือกับการแข่งขันในโลกดิจิทัล และที่สำคัญ AI ยังช่วยเพิ่มมูลค่าและสร้างผลกำไรให้กับธุรกิจได้อีกด้วย ในอนาคตอันใกล้เทคโนโลยี AI จะถูกนำไปปรับใช้ในทุกอุตสาหกรรมและทุกการดำเนินงานขององค์กร
แต่การที่องค์กรจะใช้ AI ได้เต็มศักยภาพและไม่เกิดข้อผิดพลาดนั้น จะต้องอาศัยปัจจัยหลัก 2 ด้าน คือ ข้อมูลและบุคลากรผู้เชี่ยวชาญ จึงจะสามารถขับเคลื่อนเทคโนโลยี AI ให้เกิดผลลัพธ์ได้ดีที่สุด ซึ่งปัจจัยสำคัญที่ควรคำนึงถึงก่อนลงทุนใช้ระบบ AI คือ การบริหารจัดการข้อมูล หรือ Data Management ให้มีประสิทธิภาพ
“Big Data เปรียบเสมือนเชื้อเพลิงที่สำคัญของ AI การจะสร้าง AI ให้มีมันสมองอันชาญฉลาด จำเป็นอย่างยิ่งที่จะต้องมีการจัดเก็บรวบรวม Big Data ที่มีคุณภาพ ครบถ้วนในทุกมิติของธุรกิจ หากองค์กรจะเริ่มใช้ AI ในการเพิ่มศักยภาพทางธุรกิจต้องเริ่มจากการวางโครงสร้างการจัดการข้อมูลและระบบไอทีให้ดีก่อนโดยการตรวจสอบข้อมูลที่มีว่ามีคุณภาพและพร้อมใช้งานหรือไม่ หากบริหารจัดการข้อมูลไม่มีประสิทธิภาพ ก็จะส่งผลให้ AI ดึงข้อมูลที่ไม่ได้คุณภาพ ไม่ถูกต้อง หรือไม่สมบูรณ์มาใช้งาน ซึ่งจะส่งผลให้ผลลัพธ์ที่ได้จากการประมวลผลมีการคลาดเคลื่อนและไม่ก่อให้เกิดประโยชน์ทางธุรกิจ ดังนั้นการวางโครงสร้างการจัดการข้อมูลให้มีประสิทธิภาพ จึงเป็นหัวใจสำคัญที่องค์กรต้องจัดการก่อนที่จะเริ่มใช้เทคโนโลยี AI ต่อไป”
องค์กรควรพัฒนาการบริหารจัดการข้อมูล หรือ Data Management ก่อนเริ่มต้นใช้เทคโนโลยี AI ซึ่งประกอบด้วย 4 องค์ประกอบสำคัญ คือ
1. การรวบรวมการเข้าถึงหรือดึงการใช้ข้อมูลมาบริหารจัดการไว้ในที่เดียว เพื่อให้สามารถจัดการใช้ข้อมูลในองค์กรได้ง่าย เช่น การทำ Data warehouse ในสมัยก่อน หรือการทำ Data lake ในยุคสมัย Big data ในปัจจุบัน ทำให้สามารถเชื่อมโยงข้อมูลที่เกี่ยวข้องทั้งหมดได้ในที่เดียว เพื่อนำไปใช้งานได้รวดเร็ว เห็นมุมมองที่แปลกใหม่ รวมไปถึงทำให้ AI มีความฉลาดจากข้อมูลที่หลากหลายและครบถ้วน
2. การบริหารจัดการให้ข้อมูลเหล่านั้นพร้อมใช้งาน แน่นอนว่าการดึงข้อมูลที่มาจากหลายแหล่ง ย่อมหลีกเลี่ยงปัญหาข้อมูลไม่พร้อมหรือไม่สมบูรณ์ (Corrupted data) ข้อมูลขยะ (Junk data) หรือข้อมูลที่จัดเก็บในรูปแบบที่หลากหลาย จึงเกิดกระบวนการหรือการใช้เครื่องมือที่หลีกเลี่ยงไม่ได้ อย่างเช่นการทำความสะอาดข้อมูล การเปลี่ยนแปลงรูปแบบข้อมูล หรือกระบวนการประมวลผลด้านข้อมูลใดก็ตามที่ทำให้ข้อมูลพร้อมใช้งาน ทำให้ AI ได้รับข้อมูลที่ถูกต้อง ส่งผลให้ผลลัพธ์จากการเรียนรู้ของ AI ไม่เกิดข้อผิดพลาด เอนเอียง (Biased) หรือหากข้อมูลในองค์กรมีความหลากหลาย มีความเสี่ยงที่จะเกิดการเปลี่ยนแปลงรูปแบบของข้อมูล การทำ Data quality เพื่อคอยตรวจสอบและแก้ไขข้อมูลที่ผิดพลาดอย่างทันท่วงทีก็เป็นหนึ่งในวิธีที่ช่วยเพิ่มประสิทธิภาพการควบคุมคุณภาพของข้อมูลได้